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Abstract. Sequential computations can benefit from distributed computing through the use of self-
migrating threads. On large problems, significant performance improvement is achieved by eliminating
disk paging completely, trading off against a modest amount of data communication. The key idea is
to have computation and small-sized data move to meet with large-sized data rather than the other way
around. Using self-migrating threads with strong mobility provides a flexible way of grouping computations
into programs. One of the benefits of this flexibility is ease of application-level programming. Sequential
programs are easily augmented into distributed sequential programs for solving large problems, and the
distributed sequential programs serve as a good starting point for incremental parallelization. Using our
self-migrating threads to implement distributed sequential programs is almost as efficient as using message
passing, because we have made thread migration almost as efficient as message passing.
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1. Introduction. One of the major goals of distributed computing is using networks
of workstations to solve large problems quickly. The most obvious way of achieving this
is through parallel computation, when the problem lends itself to parallelization. This can
make the computation faster in several ways. Speedup is achieved by distributing the total
computational work over multiple workstations; this is the fundamental advantage of par-
allelism. But in addition, the computation on each workstation may use a smaller working
set, leading to fewer or no page faults. Since dealing with page faults is part of the work
that must be performed, distributing a computation over multiple workstations thus de-
creases the total amount of work required by the computation. In some cases, the efficiency
advantages due to the second effect—reducing total work—may dwarf the efficiency advan-
tages due to distributing the workload. This observation suggests that even for algorithms
that are not easily parallelizable, distributing the data and the sequential computation over
multiple workstations can potentially result in significant increases in efficiency. In this
chapter, we consider distributed sequential computing (DSC), defined as computing
with distributed data using a single locus of computation, and describe a new approach to
DSC based on the use of self-migrating threads.

In order to be practically useful, DSC must be efficient and scalable, and it must also
be easy to program. Neither of the two classical approaches to distributed programming—
Distributed Shared Memory (DSM) or Message Passing (MP)—satisfies both requirements.
DSM is easy to use, but it is inefficient and unscalable [23]: the gain from eliminating
disk paging may be overshadowed by the cost of network communication. MP is efficient
and scalable, but it is in general hard to use [16]. MP is particularly ill-suited for DSC,
for reasons that will be explained later on. Our approach to DSC is based on the use of
self-migrating threads. The basic idea is to have the sequential computation, carried by a
self-migrating thread, run on a network of workstations. The data is distributed; in essence,
we use the network as a data farm. Rather than having the data migrate to the computation,
the computation (not code) follows the data. The programming of self-migrating threads is
called Navigational Programming (NavP).

DSC when implemented using the NavP approach has two major advantages:
1. Improved and Scalable Performance: The overhead of disk paging is eliminated

completely: we can achieve this simply by making sure that each data partition fits in the
main memory of a workstation. Communication through the network is handled by the
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self-migrating threads that carry small-sized data to meet with large-sized data in every
sub-computation of the entire execution. Moreover, the thread doing the computation can
send out auxiliary threads to other machines to post-write computed data and pre-fetch data
for subsequent computation. In this way, the DSC program works even when the amount
of data that needs to be processed is much larger than the amount of memory available in
the entire network.

2. Good Programmability: An existing sequential algorithm does not have to be sub-
stantially rewritten; it merely needs to be augmented with navigational statements (e.g.,
hop()) to migrate the computation from one machine to another at the appropriate points
in the algorithm. As described above, pre-fetching and post-writing may be done in parallel
with the computation, but this parallelism is very easy to introduce and does not require
modifying the sequential algorithm being executed. The thread doing pre-fetching and post-
writing typically consist of only a few lines of code, and their synchronization with the main
computing thread is straightforward.

We describe DSC, and the reasons why it is not a good fit with DSM or MP, in §2. Our
NavP approach to DSC, along with some simple examples, is presented in §3. Section 4
contains three case studies of DSC: matrix multiplication and two algorithms for solving
linear system of equations. A comparison of other possible approaches with ours is given in
§5. Section 6 provides some additional remarks.

2. Distributed Sequential Computing. We define distributed sequential com-
puting (DSC) as computing with distributed data using a single locus of computation.
There are several reasons for using sequential computing in a distributed environment. First,
only very few algorithms (referred to as “embarrassingly parallel”) can be perfectly paral-
lelized. Many parallel algorithms have inherently sequential portions, often over distributed
data, that become bottlenecks for speedup (this phenomenon is the basis of Amdahl’s law
and its variants), so it is important to be able to handle these sequential portions efficiently
and easily. Second, when solving problems on distributed-memory systems, programmers
may choose to decompose a problem into coarse-grained sequential sub-tasks that run in
parallel, even if fine-grained data parallelism is an option [16]. Third, distribution and par-
allelization are two major components in distributed parallel programming [14]. The job of
distribution is to map the task onto different machines so that the overall communication
overhead is minimized, while the job of parallelization is to identify sub-tasks that can be
performed concurrently. If we can find an easy and efficient approach to handle distribution
for distributed sequential computing, we can then build parallelism using concurrent DSC
sub-tasks in an incremental fashion. Finally, DSC programs can be used to solve large prob-
lems when parallelization is impossible or unaffordable for any reasons [1]. It is important
to note that DSC is not being proposed as a competitor to parallel computing; rather, it is
a complementary programming method that can be used in conjunction with parallelism.

Both DSM and MP fail to provide good underlying support for efficient, scalable, and
easily developed DSC programs. A single process running on DSM is, conceptually at least,
a DSC program, but it is not scalable. This is because although disk paging is eliminated,
new communication through the network is introduced, and the size of the communicated
data is proportional to the network memory farm and can be arbitrarily large compared to
the main memory on the workstation on which the process is running. The DSM approach
moves more data than needed. Moreover, when the size of the problem working set is larger
than that of the main memory, thrashing is going to happen no matter what paging device
is being used; paging to remote main memory does not reduce the number of page faults, it
only improves the service time for each page fault. In fact, a special case of DSM, “remote
main memory paging,” works under the assumption that the working set of a problem cannot
be larger than the main memory of the workstation [4].
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Message passing provides efficient and scalable programs, but distributed programming
with MP is hard, and is not amenable to incremental parallelization. The transformation
from a sequential program into an MP program is an “abrupt break” since the code must be
completely restructured [16]. So in situations where full parallelization is impossible or too
expensive, re-implementation of a sequential algorithm in MP is usually inappropriate, as
it requires paying the cost of re-implementing the program without gaining the advantage
of parallelism.

To be viable, distributed sequential computing must be both scalable and easy to use.
The key to scalability in distributed computing is reducing the amount of data being moved.
The principle of pivot-computes, defined as the principle under which a (sub-)computation
takes place on the node that owns the large-sized data, is necessary to achieve the goal of
minimizing communication. The node that owns the large-sized data is called the pivot
node. The scope of the principle of pivot-computes is code building blocks that can have
one or more statements. It is obvious that DSM-based DSC violates the principle of pivot-
computes because at any point of execution the large-sized data can be anywhere in the
workstation farm but the stationary sequential process always pulls in the data, large or
small in size, from the farm for computation. This explains why DSM-based DSC is not
scalable.

Moving computation locus across machine boundaries is unavoidable if we follow the
principle of pivot-computes in distributed memory. This observation is an immediate con-
sequence of the following two basic facts: (1) in order for a computation to be performed
on some data pieces, the data pieces and the locus of computation need to be together;
and (2) the pivot nodes that host large-sized distributed data pieces change as different
sub-computations of a program are carried out. We define computation mobility as the
ability for the locus of computation to migrate across distributed memories and continue the
computation as it meets the required data. This migration is controlled by a programmer
either explicitly using navigational statements in the programs or implicitly through data
distribution.

Computation mobility can be supported in at least two ways. Message passing can
be used to transfer locus of computation from one machine to another. In fact, since the
metaphor of message passing suggests pivot-computes strongly, an MP programmer usually
does not make the mistake of moving large-sized data. This is why MP is efficient and
scalable, and hence popular in the high-performance commercial software market [10]. But,
moving locus of computation from one machine to another with MP is cumbersome. In
an SPMD (single program multiple data) style, an MP program imposes “artificial con-
structs” that are usually in the form of If/Else blocks that define which line of code runs
on which workstation according to how data is distributed in the network. Thus, with MP,
distributing data means restructuring code. When transforming a sequential algorithm to
an MP implementation, code restructuring can be in the form of reordered and regrouped
code lines that are assigned to different artificial constructs, or broken small loops that each
runs on a different machine but altogether mimic the original large loop spanning the entire
data. This code restructuring usually causes the MP implementation to look dramatically
different from the original algorithm, and it is unnecessary because it does not contribute
directly to performance improvement. Moreover, explicit synchronization is needed among
the processes even if the MP program is a (distributed) sequential application.

Self-migrating threads that provide strong mobility [5] are another means to facilitat-
ing computation mobility. A NavP programmer can “drive” the computation to wherever
wanted by augmenting the code with navigational statements (e.g., hop()). These augments
will keep the original code structure of the sequential program unchanged, thus making
code development and maintenance easy. Small-sized data can be “carried” to meet with
large-sized data in the workstation farm. This makes it possible to follow the principle of
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pivot-computes and hence achieve scalability.

3. The Navigational Programming Approach. Self-migrating threads are con-
ceptually similar to mobile software agents [15, 17, 13]. Mobile agents are programs that
move autonomously among networked machines, carrying their data and execution states.
A mobile agent, with strong mobility [5], can halt its execution, encapsulate the values of
its variables, move to another machine, restore the state, and continue executing. This
sequence of actions is referred to as a hop() statement.

Navigational programming using self-migrating threads with strong mobility provides
a flexible and powerful way of grouping distributed computations into programs. Compu-
tations, represented by code lines in a program, can be “chained” using hop() statements.
This allows programs to execute a particular computation on one participating node, then
a second computation on another node, and so forth. In contrast, the SPMD programming
style used by the MP approach has only one way to group computations. That is, com-
putations are grouped by their execution locations, and the different groups are then put
together using If/Else If constructs. This flexibility of the NavP approach simplifies the
programming task considerably. Transforming a sequential algorithm into its NavP-based
DSC implementation requires introducing only minor changes, namely the insertion of the
appropriate navigational statements. The original code structure is preserved. We say that
such a transformation preserves algorithmic integrity.

Of course, algorithmic integrity is beneficial only if the original code structure has the
right properties (e.g., locality of reference). For this reason, it may be useful to rearrange the
sequential code before inserting the navigational commands. The important point is that
once a good starting point is chosen, there is no reason why the conversion from sequential
code to DSC code requires making unnecessary or undesirable changes in the code structure.

3.1. A brief overview of the Messengers system. All of the examples of DSC
presented in this chapter were implemented using the Messengers mobile-agent system
[6, 7]. In this system, Messengers code (with strong mobility) is translated by the Mes-
sengers compiler into C code communicating using message passing with sockets. As part
of this translation, the Messengers program is broken into small C functions, so that each
small function represents a unit of computation [25]. In essence, the navigational statements
form the boundaries of these small functions. This C code is then further compiled into ma-
chine native code for execution. The Messengers system allows code to be either loaded
from a shared disk or, in a non-shared file system, sent across the network at most once,
irrespective of how many times the locus of computation moves across the network [8].

As a result of this architecture, the additional overhead incurred by thread migration is
quite small. When a thread migrates, the state of its computation needs to be sent over the
network but the code itself does not. In the Messengers implementation, thread migration
is almost as efficient as message passing. The additional overhead of a hop() (other than
the data, which would also have to be sent in a message-passing computation) is about 200
bytes [25].

3.2. Two simple examples. We use two simple and somewhat artificial examples to
illustrate our NavP-based DSC approach. More realistic examples are provided in §4. In
our first example, we assume that A and B are two large N ×N matrices and we compute
the vector A (B diag(A)), where diag(A) is a vector consisting of the diagonal entries of A
and both multiplications represent a matrix multiplied by a vector. We assume there are
two nodes, with A located on node0 and B located on node1. The pseudocode is listed in
Fig. 3.1(a). The diagonal entries of matrix A are extracted and assigned to a vector v1 of
size N at line (1). Matrix B is then multiplied by v1 to obtain a vector of size N assigned
to v2 at line (2). Finally, A is multiplied by v2 to obtain v3 at line (3). In the MP version,
listed in Fig. 3.1(b), lines (1) and (3) are executed on node0 because they both require
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(1) v1 = diag (A)
(2) v2 = B v1
(3) v3 = A v2

(a)

(1) v1 = diag (A)
(1.1) hop (node1)
(2) v2 = B v1
(2.1) hop (node0)
(3) v3 = A v2

(c)

(0.1)If µ == node0
(1) v1 = diag (A)
(1.1) Send (v1, node1)
(1.2) Recv (v2, node1)
(3) v3 = A v2
(3.1)ElseIf µ == node1
(3.2) Recv (v1, node0)
(2) v2 = B v1
(2.1) Send (v2, node0)
(2.2)EndIf

(b)

t1

t2

t3

Computation

Dependence

tim
e

(1)

(3)

(2)

spacenode0 node1
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(d)

Fig. 3.1. Computing on distributed data. (a) Sequential. (b) MP. (c) NavP. (d) Two ways of grouping
computations.

matrix A, while line (2) is on node1 because it computes with B. As a result, the three lines
in the original algorithm is now reordered and regrouped - lines (1) and (3) are in one group
and line (2) is in another, as depicted by the ovals in dashed lines in Fig. 3.1(d). The groups
are then assigned to one of the If/Else If constructs (µ is the ID of the current node).
This demonstrates that with MP distributing the data requires restructuring the code.
Communication and synchronization between the two nodes are done through Send () and
Recv () (lines (1.1), (1.2), (3.2), and (2.1)). Explicit synchronization is needed among the
computations even if the MP program is (distributed) sequential. This MP implementation
follows the principle of pivot-computes. The pivot nodes for lines (1) and (3) are node0,
and for line (2) is node1. In the NavP implementation, with code shown in Fig. 3.1(c),
v1 and v2 are agent variables, which are “carried” by a mobile agent to whichever node
it visits, and A and B are node variables, which are stationary to nodes, on node0 and
node1 respectively. The NavP code is basically the same as the sequential code except for
the insertion of two hop() statements, which enable the thread to navigate between the
two nodes. The NavP implementation also follows the principle of pivot-computes, and the
amount of communication incurred, namely vectors v1 and v2, is the same as in the MP
code. The NavP approach provides a flexible way of grouping computations into threads,
as depicted in Fig. 3.1(d) by the angular shape in solid line. As a result, communication
and synchronization among the sequential computations are intra-thread, and therefore are
subsumed in the execution flow.

(1) For i = 2 .. n
(2) A[i] = A[i− 1] + 1
(3) End For

(a)

(1) For i = 2 .. n
(1.1) x = A[i− 1]
(1.2) If i == n/2 + 1 hop (node1)
(2) A[i] = x + 1
(3) End For

(c)

(0.1)If µ == node0
(1) For i = 2 .. n/2
(2) A[i] = A[i− 1] + 1
(3) End For
(3.1) x = A[n/2]
(3.2) Send (x, node1)
(3.3)ElseIf µ == node1
(3.4) Recv (x, node0)
(3.5) A[1] = x + 1
(1’) For i = 2 .. n/2
(2’) A[i] = A[i− 1] + 1
(3’) End For
(3.6)EndIf

(b)

Fig. 3.2. Looping over distributed array. (a) Sequential. (b) MP. (c) NavP.
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The second example is a simple sequential loop over a 1-D array A[1..n], shown in
Fig. 3.2(a). Because of the dependency between A[i] and A[i − 1], this loop is hard to
parallelize [18]. For data distribution, we assume the first n/2 elements of A are on node0
and the second n/2 elements on node1. The sequential MP code is shown in Fig. 3.2(b).
The loop is broken into two parts in order to follow the principle of pivot-computes, one
in If block (lines (1), (2), and (3)), another in Else If block (lines (1’), (2’), and (3’)).
At the array boundary with A[n/2] on node0 and A[n/2 + 1] on node1, communication of
A[n/2] and synchronization are needed (lines (3.2) and (3.4)). The NavP implementation,
listed in Fig. 3.2(c), on the other hand, preserves the loop structure. The loop index i and
the temporary variable x are agent variables. The arrays A[.] on both nodes are two node
variables acting as one distributed shared variable (DSV) [19].

4. Case Studies. In this section, we present case studies with three real-world appli-
cations, namely matrix multiplication, Gauss-Seidel iteration, and Crout factorization. Our
focus will be on the comparison of performance and programmability between the NavP-
based and the other approaches to DSC.

When the total memory use of an application exceeds the size of the main memory on
one node, virtual memory is used and hence disk paging occurs. When the working set
cannot fit into the main memory, heavy disk paging, or thrashing, happens. Both paging
and thrashing can dramatically degrade the performance, although the exact point at which
the performance deteriorates may vary depending on the details of the implementation and
the data access patterns. One way to reduce paging is to continue to use a sequential
program and augment it with ad hoc “spill logic” that uses the knowledge of the future data
access pattern to reduce disk paging overhead. But this solution is application dependent,
cumbersome, and non-scalable.

To eliminate disk paging, we use network-connected machines, and code the applications
using the NavP approach. The basic idea is simply to decompose the entire data into
smaller pieces each fitting completely into the main memory of a workstation, and therefore
all computations on all the machines will be paging free. Self-migrating threads carrying
relatively small amounts of data, such as loop indices or intermediate result, hop among the
machines to perform computations.

In addition to the performance gained from eliminating paging, the NavP approach is
easy. In principle, it is possible to mimic the behavior of the NavP code with message
passing, using stationary processes that transfer the locus of computation by sending wake-
up messages that contain the state of the computation. In two of our examples (matrix
multiplication and Crout factorization), we provide MP-based DSC pseudocode to illustrate
the additional burden placed on the programmer when MP is used rather than self-migrating
threads.

The NavP implementations used Messengers. All the performance tests were run on
SUN Sparc Ultra-1’s with 64MB of main memory, 1GB of virtual memory, and 10Mbps of
Ethernet connection. These workstations have a shared file system (NFS).

4.1. Matrix multiplication. The first example is matrix multiplication, i.e., C =
A B, where A, B, and C are assumed to be square dense matrices for simplicity. We use
a block-fashion coarse-grained algorithm, and partition the matrices into p horizontal and
vertical strips, as depicted in Fig. 4.2 with p = 3. Each piece Cij is the product of two slices
Ai and Bj. Sequential pseudocode is listed in Fig. 4.1(a).

The DSC implementation of matrix multiplication assumes that a sequence of sub-
matrix multiplications are performed, and each multiplication in the sequence requires a
pre-fetching (to obtain the two sub-matrices being multiplied) and a post-fetching (to store
the resulting sub-matrix). Performing fetching in parallel with computations provides some
speedup, even if the computations are strictly sequential. To explore further parallelism in
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(1) For i = 0 .. p− 1
(2) For j = 0 .. p− 1

(3) Cij = Ai Bj

(4) End For
(5) End For

(a)

(1) For i = 0 .. p− 1
(2) For j = 0 .. p− 1
(2.1) inject (WR (i, j))
(2.2) waitEvent (IOb(i,j))

(3) Cij = Ai Bj

(3.1) hop (!µ)
(4) End For
(5) End For

(b)

(1) WR (int i, int j)
(2) hop (!µ)
(3) write (Ci′′j′′)
(4) read (Ai′ ,Bj′)
(5) signalEvent (IOb(i′,j′))
(6) End

(c)

Fig. 4.1. Pseudocode for matrix multiplication. (a) Sequential. (b) NavP. (c) Fetching.

=

C11

1A

B1

X

Fig. 4.2. Matrix decomposition.

matrix multiplication, one can use, e.g., Gentleman’s algorithm. In the interest of clarity
and simplicity in presenting the idea of DSC, we focus on the first source of parallelism
coming from parallel fetching. We use two networked workstations. There are two threads
carrying out the task. One thread called Multiplier , with the pseudocode listed in Fig. 4.1(b),
calculates Cij on the node where Ai and Bj reside. This thread hops between the two nodes
alternately carrying its computation state, the loop indices i and j which indicate which
Cij is being calculated. The computation locus is only on a single node, either node0 or
node1, at any particular time. A second thread, called WR (writer and reader, with code
listed in Fig. 4.1(c)), injected (i.e., spawned) by the Multiplier at line (2.1) on one node,
hops to the other node (!µ), post-writes Ci′′j′′ computed from the previous iteration to disk,
and pre-reads Ai′ and Bj′ , the next pair of slices to be computed after the pair Ai and Bj .
Obtaining (i′′, j′′) or (i′, j′) from (i, j) is trivial, and the details are thus omitted. These two
threads synchronize among themselves using local “events.” For example, Multiplier will
need to, on either node, wait for WR running on the same node to finish before it can start
computing; so at line (2.2) it waits for an event, IOb(i,j), signaled by WR (at line (5)) after
reading Ai and Bj . In Messengers, signalEvent() and waitEvent() implement the classical
operations of process blocking and wakeup. Only program state (e.g., loop indices i and
j) that is tiny compared to the data (i.e., matrix slices), migrates between the two nodes.
Provided the total size of Ai, Bj and Cij does not exceed the size of the main memory on
either node, the computation will not cause disk paging.

Fig. 4.3 lists the pseudocode for MP implementation. The code is much longer, and
more importantly the code lines are regrouped according to where they are executed. For
example, line (3) in the original code Fig. 4.1(a) is repeated in the MP implementation
(lines (6) and (23) in Fig. 4.3) because this code line is executed on both nodes. The two
nested loops are duplicated on both nodes, with the one on node1 being a While() loop
that is a semantically equal translation of the loop nest. Here node0 has all the loop state
information and node1 is acting as a slave by doing what it is told to do. Another way of
implementing is to have both nodes compute redundantly the loop state information. In
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(1) If µ == node0

(2) For i = 1 .. p
(3) For j = 1 .. p
(4) If (i ∗ p + j)%2 == 0
(5) Send (“read”, (i, j), node1)
(6) Cij = Ai Bj

(7) Else
(8) Send (“comp”, (i, j), node1)
(9) write (Ci′′j′′ )
(10) read (Ai′ , Bj′)
(11) End If
(12) Recv (sync, node1)
(13) End For
(14) End For
(15) Send (“stop”,(0,0), node1)

(16)ElseIf µ == node1

(17) While (1)
(18) Recv (s, (i, j), node0)
(19) If s == “read”
(20) write (Ci′′j′′ )
(21) read (Ai′ , Bj′)
(22) Else If s == “comp”
(23) Cij = Ai Bj

(24) Else If s == “stop”
(25) exit
(26) EndIf
(27) Send (sync, node0)
(28) End While

(29)EndIf

Fig. 4.3. Pseudocode for matrix multiplication in MP.
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Fig. 4.4. Performance of matrix multiplication.

this way, the amount of communication will be slightly smaller, but both nodes will have
to maintain two full loops. It is not clear which way is better, but in either case significant
code restructuring is unavoidable.

While the MP pseudocode represents a significant departure from the original algorithm,
the NavP implementation leaves the code structure essentially unchanged (Fig. 4.1(b));
the algorithm is augmented with three statements: a hop() (line (3.1)), a waitEvent()
(line (2.2)), and an inject() (line (2.1)). The code for fetching (Fig. 4.1(c)) is written
separately and it is not tangled with the code for computing at all.

Fig. 4.4 shows that the performance of the sequential C code deteriorates dramatically
after the total size of the matrices reaches a certain critical value (around 140MB). Our
NavP implementation has performance almost identical to that of the C implementation
when the total size of the matrices is below this critical value, and it continues the same
performance trend after the total size exceeds this critical value.
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4.2. Gauss-Seidel iteration. Much of the CPU time spent in executing numerical
analysis programs is used in solving linear systems of equations. In this and the next
subsections we consider two classical methods for solving linear systems: namely, an iterative
method based on Gauss-Seidel iteration and a direct method based on Crout factorization.

Let Ku = f be a system of linear equations, where K is an N × N matrix, u and f
are vectors of size N . Matrix K can be decomposed into K = D − L − U , where D is
the diagonal of K, and −L and −U are the strictly lower and upper triangular parts of K.
Gauss-Seidel iterative method [2] can be expressed as

un+1 ← PGun + (D − L)−1f,(4.1)

where PG = (D − L)−1U is the Gauss-Seidel iterative matrix.
We update the components of the solution vector u in ascending order. Components

of the new approximation un+1 are used as soon as they are computed. In other words,
we solve the jth equation for uj using new approximations for components 1, 2, ..., j − 1.
The initial value of u can be arbitrary, e.g., u0 = [0, 0, ...,0]T. Gauss-Seidel iteration can
be done in a block fashion, in which only a portion of the solution vector un+1 is updated
given a slice of the matrix K and the entire solution vector from the previous iteration
un, as illustrated in Fig. 4.5. This is a coarse-grained algorithm. The stopping criteria is
‖en‖2 < TOL, where en = un − un−1 is the error at iterative step n, TOL is a user defined
tolerance, and ‖ · ‖2 is the L2 norm defined by ‖e‖2 = {

∑N−1
j=0 e2

j}
1
2 .

Since matrix K is usually banded, we do not store the leading and trailing zeros of the
rows. This is referred to as the “compact row storage scheme,” under which the rows are
stored in a 1-D array, and an integer array of size N is used to store the positions, in the
1-D array, of the first nonzero terms of all rows.

1

n

K1

u

= X

n+1u

n+1u

Fig. 4.5. Matrix decomposition and block fashion of Gauss-Seidel iteration.
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Fig. 4.6. The network for Gauss-Seidel iteration.
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(1) u1 = {0}; err = 1
(2) While err > TOL
(3) u0 = u1

(4) For j = 0 .. p− 1
(5) u1 = block gs (Kj, u0, f)

(6) End For

(7) err = check error (u0 , u1)
(8) End While

(a)

(1) u1 = {0}; err = 1
(2) While err > TOL
(3) u0 = u1

(4) For j = 0 .. p− 1
(5) u1 = block gs (Kj , u0, f)
(5.1) hop ((j + 1)%p)
(6) End For

(7) err = check error (u0 , u1)
(8) End While

(b)

Fig. 4.7. Pseudocode for Gauss-Seidel iteration. (a) Sequential. (b) NavP.

The matrix K is partitioned into horizontal slices, as illustrated in Fig. 4.5. Each slice
of K is used to update the components of u corresponding to row positions of the slice. The
network used by the NavP implementation is a ring, where the number of nodes is equal
to the number of slices, p, into which K is partitioned; the case of p = 3 nodes is shown in
Fig. 4.6. A thread carrying the solution vector u can visit a node, use the slice of K on that
node to update the corresponding entries of u, and then hop to the next node, repeating
this until the error satisfies the stopping criteria.

The pseudocode is shown in Fig. 4.7. The function block gs() runs one step of Gauss-
Seidel iteration Equ. (4.1) in the block fashion. Notice that the NavP code (Fig. 4.7(b))
is almost identical to the sequential code (Fig. 4.7(a)); the only difference is the hop()
statement. In the NavP implementation, j and u1 are agent variables, and other variables
are node variables.
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Fig. 4.8. Performance of Gauss-Seidel iteration.

Performance data is shown in Fig. 4.8. The K matrices used are banded, and their
bandwidth is 10% of their dimensions. The numbers in parentheses by the Messengers
curve indicate the number of workstations used, and the amount of total memory required
is marked by the C code curve. It would also be possible to implement the NavP version of
Gauss-Seidel method using only two workstations, with one pre-fetching the sub-matrix slice
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(1) For j = 1 ..N

(2) For i = 2 .. j − 1

(3) Kij ← Kij −
∑i−1

l=1 KliKlj

(4) End For

(5) For i = 1 .. j − 1
(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij

(9) End For
(10) End For

(a)

(1) For j = 1 ..N
(1.1) hop (node[j])
(1.2) If (hopped across node)
(1.3) inject (WR(j))
(1.4) waitEvent (IOb(j))
(1.5) End If
(1.6) load (column j)

(2) For i = 2 .. j − 1
(2.1) hop (node[i])
(2.2) load (Kii)

(3) Kij ← Kij −
∑i−1

l=1 KliKlj

(4) End For

(4.1) hop (node[j])
(4.2) unload (column j)

(5) For i = 1 .. j − 1
(6) T ← Kij

(7) Kij ← T
Kii

(8) Kjj ← Kjj − TKij

(9) End For
(10) End For

(b)

Fig. 4.9. Pseudocode for Crout factorization. (a) Sequential. (b) NavP.

to be used next while the other performing the computation, similar to the implementation
of matrix multiplication described in §4.1.

4.3. Crout factorization. When matrix K is symmetric and positive-definite, there
exists a non-singular lower triangular matrix L, with unit diagonal entries, and diagonal
matrix D such that K = LDLT . The process of obtaining matrices L and D is called
factorization. One possible way of conducting factorization is due to Crout [11], and the
pseudocode is listed in Fig. 4.9(a).

Only the upper part of the matrix K is stored due to its symmetry. To further save
storage for a banded matrix, a “skyline” storage scheme is used, in which we link the first
non-zero items in every column together to form a “skyline,” and we do not store the zero
values above this line. Zero values under the skyline are stored, since they could become
non-zero during Crout factorization. No additional storage is necessary in the factorization
process since the algorithm works in place and K is overwritten by L and D at the end.

In line (3) of the Crout algorithm listed in Fig. 4.9(a), the summation over l corresponds
to a dot product of two sub-vectors of columns i and j. These are the two shaded vectors
in Fig. 4.10(a). The computation of the jth column depends on the previously computed
columns, which constitute the working set. Fig. 4.10(b) is an example for a banded matrix,
with the shaded area being the working set for the jth column.

Crout factorization is an algorithm with good locality of access. There does not need
to be sufficient memory to hold the entire half matrix; as long as the working set fits in
memory, performance is good. However, when the size of the working set exceeds the size
of the main memory on a single workstation, extensive thrashing occurs. In Fig. 4.12 the
dashed line shows how bad the performance can be when the size of the working set exceeds
the size of main memory.

The basic idea of the NavP implementation is for a self-migrating thread to carry the jth

column to the working set, which is distributed among several workstations, and compute the
terms of the column on these machines. The amount of communication overhead incurred
by this approach is obviously much smaller than if the working set is brought in to meet



234 L. Pan, L. F. Bic, M. B. Dillencourt, and M. K. Lai

K

ji

ij

(a)

j

(b)

k-1

k

j

k-2

(c)

Fig. 4.10. Crout factorization. (a) Computing of Kij requires the dot product of the two shaded
vectors. (b) Working set for column j. (c) Working set decomposition.

with the jth column. The working set is decomposed into several pieces each consisting of
several matrix columns, where the number of pieces is chosen so that each piece can fit into
the main memory of one workstation thus avoiding paging overhead. Fig. 4.10(c) shows an
example for which the working set is subdivided into three pieces. The arrows indicate how
a thread, carrying the jth column which it is computing, moves through the pieces of the
working set.

Fig. 4.11(a) shows the network, again assuming that the working set is decomposed into
three pieces. The network consists of four nodes. Three of the nodes are used to hold the
three working set pieces shown in Fig. 4.10(c), and a fourth node is used to pre-fetch the
next piece that will be used later. All four nodes are fully connected, so that a thread can
hop to any node from anywhere in one step. As indicated by the arrows, a thread would
load from a node variable and carry the jth column in its agent variable, and hop from
node 1 to node 3 where piece k − 2 resides; after it finishes computing using piece k − 2, it
hops forward along the link to node 2 where piece k − 1 resides (note that k − 2 and k − 1
are pieces that have been already computed in the previous loops); finally, it hops back to
node 1, computes the rest of column j using piece k, and unloads the jth column from its
agent variable to the node variable, and then scales the jth column using the diagonal terms
it carries back from the other nodes. These loops go on and on until all columns in piece
k are computed, at which time the thread moves on to the next node (4 in the example)
to compute piece k + 1. Again, the previously computed pieces k − 1 and k will be used
in computing k + 1, but piece k − 2 will no longer be used in factorization, so we can now
save piece k − 2 to the hard disk, and use node 3 to pre-fetch piece k + 2. Fig. 4.11(b)
shows this next step when piece k + 1 is being computed. If we compare Fig. 4.11(b) with
Fig. 4.11(a), we see that the network is like a “running wheel” rotating forward (clockwise)
while it processes the matrix pieces sequentially. In order for a thread to hop to the right
machine for a column, a map of a column number to a node number is kept on every node
(node[.] in Fig. 4.9(b)). This map is a by-product of data distribution.

Two threads are employed in our implementation. The first one, named Factor , has
its code (listed in Fig. 4.9(b)) augmented from the original Crout algorithm (Fig. 4.9(a)).
Three hop()s (lines (1.1), (2.1), and (4.1)) and three load()/unload()’s (lines (1.6), (2.2), and
(4.2)) are added. A load() statement copies data from a node variable to an agent variable,
and a unload() statement does the opposite operation. The cost of the hop() statement is
negligible if the destination node happens to be the one that the thread resides on. A second
thread called WR (writer and reader) is injected (line (1.3)) to conduct post-writing and
pre-fetching whenever Factor hops across node boundary (lines (1.1) and (1.2)). WR(j )
would hop back to the node from which Factor came, write the factorized piece to disk,
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Fig. 4.11. The network for Crout factorization. (a) currently computing piece k. (b) currently
computing piece k + 1.

read in the piece b(j) + 1, which is next to the one containing column j, and then signal
an event IOb(j)+1 that indicates that it has done the appropriate fetching. This event is
caught by Factor at line (1.4), when it visits the node next time, to ensure correctness of
the computation. The pseudocode for WR is similar to the one in Fig.4.1(c) and therefore
not listed. We gain a huge advantage doing fetching not only from the pipelining of disk
I/O, but also from the fact that now our program can solve problems that are many times
(35 in our example) larger than the memory available on a single workstation with only few
workstations (4 in our example). We would have had to use 35 machines had we not used
fetching.

Fig. 4.12 shows the performance of Crout factorization. The K matrices used are
banded, and their bandwidth is 10% of their dimensions. The numbers in parentheses by
the Messengers curve indicate the number of pieces into which the matrix K is subdivided.
Total memory required is also marked for some problem sizes. One may notice that the gap
between the two curves (excluding the segment corresponding to disk thrashing) now is larger
than what’s shown in Fig. 4.4 (matrix multiplication case). This is because the amount of
communication through the network is larger. In fact, since almost all the columns (except
for the columns in the very first piece) are carried around, the amount of communication
is proportional to the size of the entire matrix (Θ(N2)). However, since the computational
complexity of Crout factorization is Θ(N3), our implementation is scalable. Also, with
fast network (e.g., 100Mbps), our analysis and test show that the time for communication
overhead can be reduced to about 5% of the total elapsed time.

Fig. 4.13 shows the pseudocode of Crout factorization using MP. Notice that in this
pseudocode fetching is not considered at all, and some details, e.g., the boundary cases of
k, are left out. Also, this code is written assuming that the matrix K is decomposed into P
pieces with each working set decomposed into three pieces. More Else If constructs would
be needed if working set is sliced into more pieces. In the pseudocode, µ is the process ID,
which is defined as the index of a matrix piece that a processor owns. Ik is the index of the
first column that piece k owns. And {Kdd} is a vector of diagonal entries. If we compare the
MP implementation shown in Fig. 4.13, with the original algorithm shown in Fig. 4.9(a), the
differences are considerable. The If/Else If constructs artificially break the original code
into blocks that will be executed on different nodes. In Fig. 4.13, code lines (6)–(8), (6’)–(8’),
and (6”)–(8”) used to be one loop in the original algorithm (lines (2)–(4) in Fig. 4.9(a)), or
the NavP code (lines (2)–(4) in Fig. 4.9(b)), but they are broken up by MP into different
sub-blocks. In contrast, NavP-based DSC implementation (Fig. 4.9(b)) keeps the original
code structure unchanged.
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Fig. 4.12. Performance of Crout factorization.

(1) For k = 1 .. P
(2) If µ == k
(3) For j = Ik .. Ik+1 − 1
(4) Send (col j, k − 2)
(5) Recv (col j, {Kdd}, k − 1)
(6) For i = Ik .. j − 1

(7) Kij ← Kij −
∑i−1

l=1 KliKlj

(8) End For

(9) For i = 1 .. j − 1
(10) T ← Kij

(11) Kij ← T
Kii

(12) Kjj ← Kjj − TKij

(13) End For
(14) End For

(15) Else If µ == k − 2
(16) For m = Ik .. Ik+1 − 1

(17) Recv (col j, k)
(6’) For i = Ik−2 .. Ik−1 − 1

(7’) Kij ← Kij −
∑i−1

l=1 KliKlj

(8’) End For
(18) Send (col j, {Kdd}, k − 1)
(19) End For

(20) Else If µ == k − 1
(21) For m = Ik .. Ik+1 − 1
(22) Recv (col j, {Kdd}, k − 2)
(6") For i = Ik−1 .. Ik − 1

(7") Kij ← Kij −
∑i−1

l=1 KliKlj

(8") End For
(23) Send (col j, {Kdd}, k)
(24) End For
(25) End If
(26) End For

Fig. 4.13. Pseudocode for Crout factorization in MP (without fetching).

5. Other Approaches. Using a network of workstations as a data paging farm is a
promising notion because future improvements in the performance of disk paging appear to
be limited by the inherent bottleneck of mechanical seek time, but there is no such limit
on the speed and bandwidth of computer network. The “remote memory paging” approach
[3, 4], as a special case of DSM, is based on the notion and is one way of doing DSC. In
this approach, a stationary process runs on a single machine and accesses data remotely
through the network. A major disadvantage of this approach is its non-scalability because
the principle of pivot-computes is clearly violated. A positive feature of this approach is
that it is a new paging scheme at operating system level which means it does not assume
any knowledge of the specifics of any applications.

The approach of DSC using self-migrating threads distinguishes itself from remote mem-
ory paging in three ways. First, we do not move all data to one single machine; rather we
move computation to large-sized data, which can significantly reduce communication over-
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head. Second, we use auxiliary threads (WR in two of our examples) with very simple
behavior and synchronization to utilize the “spare” CPU cycles in the workstation farm
to pipeline data I/O. This enables us to use only a few workstations to solve very large
problems, with total data size much larger than the total amount of main memory available
in the workstation farm. Third, we augment a sequential program to make it self-migrate
in the network; this requires knowledge of data accessing pattern of the application.

The MP approach to DSC is scalable, but it achieves computation mobility by mimicing
strong mobility manually. In contrast, the NavP approach passes the burden of code restruc-
turing to a mobile agent compiler that supports strong mobility. Therefore, our approach
is much easier than MP.

Another possible approach to DSC is the “remote procedure call,” or RPC. Indeed,
RPC can suggest pivot-computes too. Of course, pivot-computes requires that services are
data-distribution driven, rather than being provided transparently by a middleware based
on availability. But RPC and NavP approach use different metaphors. In fact, RPC is
a special case of our approach. A remote procedure call will always have to return the
control to the calling client, while a self-migrating thread does not have to return to the
location where it is spawned. This could cause difficulties to RPC in handling certain
applications (e.g., ones that have locus of computation move through a linear data structure
like in Crout factorization). Although some RPC-based systems [9] have figured out ways
to pass intermediate data from server to server directly without going through the client
unnecessarily, method invocations will still have to be through the calling client. Rather than
resolving these issues stemming from a metaphor that is improper for some applications, it
is easier to directly embrace the NavP approach in general purpose distributed sequential
programming.

6. Final Remarks. We have presented three case studies of distributed sequential
computing on a network of workstations. In each case, the performance on a large problem,
with a total size of data considerably larger than the memory of a single machine, is quite
close to the performance that would be achieved if the data fit in memory. Scalability is
achieved by following the principle of pivot-computes using computation mobility facilitated
by self-migrating threads. In addition, through the use of a mobile agent compiler that sup-
ports strong mobility, our implementations preserve algorithmic integrity. The algorithms
remain essentially unchanged: the main difference between our DSC implementation and the
sequential algorithm is the addition of hop() statements to allow the computations to migrate
in the distributed environment. Algorithmic integrity not only makes program development
and maintenance easy, but also enables the DSC programs to be backward compatible with
uni-processor architecture. Since the sequential code structure is unchanged in the NavP
implementation, if the navigational statements are ignored, the NavP program runs cor-
rectly on a uni-processor machine. This is because data location information is referenced
in the hop() statements (i.e., navigational statements), but not in any other statements.
Backward compatibility to a uni-processor is more problematic in the case of MP code,
since data location information is explicitly used in changing the code structure.

One may have noticed that in all our examples we use, as a starting point for the DSC
implementation, a sequential algorithm with good locality of access. This makes it easy to
insert hop() statements so that the resulting NavP program has relatively coarse granularity.
While it might appear that this places special constraints on the NavP approach, we argue
that this is not the case, for two different reasons. First, in most real-world situations, the
sequential program will already have been written to take advantage of locality of access,
so it will not be necessary to modify the sequential code before adding the navigational
statements. Second, any fine-grained algorithm needs to be “coarsened” before it can be
efficiently implemented in a distributed memory environment using any approach such as
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MP. For example, in matrix algorithms, operations on scalars generally need to be replaced
by operations on blocks in the matrix.

For programs that use large data sets, paging may become an impediment to scalability.
NavP-based DSC provides a means of eliminating this paging overhead with only a minor
amount of programming effort. Of course, further improvement can be usually gained
from a parallel re-implementation. In some cases the parallel implementation is an easy
modification of the sequential algorithm (e.g., the iterative method), while in other cases a
parallel implementation may require significant rethinking and reworking of the sequential
algorithm (e.g., Crout factorization). In any specific situation, the question of whether the
additional improvement to be gained from a parallel re-implementation justifies what might
be a major re-programming effort needs to be evaluated on a case-by-case basis. NavP-based
DSC code provides a good starting point for incremental parallelization. Some preliminary
work on using NavP-based DSC to facilitate distributed parallel programming is presented
in [20, 21].

DSC frequently needs to perform fetching of data. This is seen in two of our examples.
In DSC matrix multiplication, there are p2 distinct sub-matrix pairs that must be multiplied.
In DSC Crout factorization, total matrix size (e.g., 1.2GB) is much larger than the size of the
working set (e.g., 64MB). In both cases, many more workstations would have been used had
we not employed fetching. Fetching is quite easy in the NavP approach. Sequential NavP
programs keep their original code structures, the threads doing fetching have very simple
tasks, their code is separated from the code for real computations, and their synchronization
with the main computation locus is straightforward. In contrast, with MP the code lines
for computation and fetching are unavoidably tangled.

As described in this chapter, DSC using NavP requires inserting explicit navigational
statements in the programs for computation to follow data. It would be useful if the naviga-
tional statements could be derived directly from data distribution and hence made implicit.
This problem is related to recent research on thread migration in DSM [24, 12]. Some
preliminary approaches to navigational programming in DSM are presented in [22].
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